一、船舶主机凸轮轴换向原理?
船舶主机凸轮轴的换向原理是基于柴油机的工作循环。
换向是指在活塞往返运动中,及时改变气缸内燃料喷入、燃烧和废气排出的顺序。
通过这种换向,可以使活塞在气缸内完成吸气、压缩、燃烧和排气四个工作过程。
具体原理如下:1. 活塞在上止点位置:排气门开启,废气通过排气门排出,同时进气门关闭;2. 活塞开始下行:排气门保持开启,活塞将废气从气缸排出,此时排气门关闭;3. 活塞下行至下止点位置:进气门打开,新鲜的燃料-空气混合物进入气缸;4. 活塞开始上行:进气门保持打开,新鲜的燃料-空气混合物被压缩,形成可燃混合物;5. 活塞上行至上止点位置:进气门关闭,同时点火系统发生火花点火,可燃混合物燃烧;6. 燃烧产生的高温高压气体推动活塞下行:进气门保持关闭,同时排气门关闭,继续向下运动;7. 活塞下行至下止点位置:排气门打开,将燃烧产生的废气排出,同时进气门关闭,重复上述工作循环。
上述换向原理使得船舶主机的活塞在气缸内完成吸气、压缩、燃烧和排气四个工作过程,从而实现循环工作,驱动船舶的运行。
二、船舶主机原理?
船舶主机的工作原理:
1,电子控制柴油机燃油喷射,正时和喷油量的控制;
2,传统的柴油机采用凸轮控制;
3,凸轮转动以控制高压油泵的开启和关闭;
4,电喷系统由传感器、控制器和执行机构组成 。
三、船用主机换向原理?
直流电机中的转子电流是从直流电源获得的。电源的电流提供给机械换向装置。换向装置中旋转的部分称为换向器,静止的部分由两个电刷组成,通常称为A和B。
外电源的正极连接A电刷,负极连接B电刷,电刷将电流传导到换向器中,换向器直接与转子中导体相连。电刷固定在定子上,不能移动。换向器安装在转子轴上并随着转子以相同的速度旋转。
静止的电刷沿着换向器的一周安放。外部直流电源将电流输入到位置相对的电刷A和B中。不动的电刷与换向片接触,将电流传导至转子导体中。当转子旋转,电刷从一组换向片滑到另一组换向片。
船舶主机原理:
1,电子控制柴油机燃油喷射,正时和喷油量的控制;
2,传统的柴油机采用凸轮控制;
3,凸轮转动以控制高压油泵的开启和关闭;
4,电喷系统由传感器、控制器和执行机构组成 。
四、船舶主机换向故障引起的原因?
1. 发动机异常:船舶在航行时,如果发动机故障,可能会导致一缸换向。这个故障可能是通过检查发动机的电气、燃油和冷却系统等部件来鉴定的。
2. 差压变送器问题:如果差压变送器压力源本身存在波动,或者压力传感器抗干扰能力不强,周边有周期性的干扰波动,都可能导致压力不稳定,从而引起船舶主机换向故障。
3. 线路问题:如果差压变送器显示数据正常,但线路存在问题,例如屏蔽线周边有干扰、电柜内有干扰信号等,也可能导致船舶主机换向故障。
4. SCR催化器问题:如果SCR催化器本身存在故障,例如催化器堵塞、损坏等,也可能导致船舶主机换向故障。
对于船舶主机换向故障,通常需要根据具体情况进行分析和排查,采取相应的维修措施,以确保船舶的安全和稳定运行。
五、船舶的主机如何进行换向的?
船舶的主机它有换向机构,当主机正车时它有一组凸轮机构,使主机按照正车的发火顺序工作,当主机需要倒车时,只要改变该凸轮机构一个角度,从而改变主机的发火顺序,就能改变主机的运转方向。
六、船舶主机换向不到位的原因?
回答如下:船舶主机换向不到位可能有多种原因,以下是一些可能的原因:
1. 操纵系统故障:船舶主机换向系统的操纵系统可能存在故障,例如操纵杆、液压系统或电子控制单元故障,导致换向不到位。
2. 油路问题:船舶主机的润滑油路或液压油路可能存在问题,例如油压不足、油管堵塞或泄漏等,导致主机不能正常换向。
3. 传动系统故障:船舶主机的传动系统可能存在故障,例如齿轮磨损、链条断裂或带轮脱落等,导致主机无法正确换向。
4. 电力供应问题:船舶主机的电力供应系统可能存在问题,例如电池电量不足、电源线路故障或发电机故障等,导致主机无法正常运转。
5. 操作错误:船舶操作员可能在操纵主机换向时出现误操作,例如操纵杆操作不当或指令传达不准确等,导致主机换向不到位。
6. 环境因素:船舶在恶劣环境条件下操作时,例如强风、大浪或冰冻海域等,可能会影响主机的换向能力。
以上只是一些可能的原因,具体的原因还需要根据具体情况进行分析和排查。船舶操作员和维护人员应该对主机的换向系统进行定期检查和维护,确保其正常运行。
七、船舶主机监测系统原理?
船舶主机监测系统主要采用传感器、数据采集、数据处理、通讯传输等技术手段来实现,可以对船舶主机进行实时监测和故障预警。
其中,传感器负责收集船舶主机各个部位的数据,比如温度、压力、振动、转速等等,数据采集器负责将传感器采集到的数据进行整理、分类、计算等,特定情况下还会触发报警机制,以便采取相应措施。
数据处理器将数据分析后封装成标准通信协议的数据包,通过通讯模块传输到监测中心。这种方式可以保证在全球范围内实现监测和故障预警,极大程度上保障了船舶的安全。需要指出的是,船舶主机监测系统只是大型船舶安全监控系统中的一部分,整个系统包括温度、气压、油液系统监测等多种模块。
该系统为大型船只的安全性提供了有效保障,极大程度上减少了船舶事故的发生。
八、船舶主机转速测量原理?
船舶主机转速测量通常使用以下原理:
1. 光电传感器:这是最常见的转速测量方式之一。在主机上安装一个光电传感器,其包含一个光源和一个光敏元件。当主机上的旋转部件经过时,光源被阻挡,光敏元件检测到光线的变化。通过测量光敏元件接收到的光线变化频率,可以计算出主机的转速。
2. 磁性传感器:磁性传感器通过检测主机上的磁场变化来测量转速。在主机上安装有磁性传感器,然后将一个可旋转的磁性目标附加到主机旋转部件上。当主机旋转时,磁性目标会导致磁场产生变化,传感器可以检测到这种变化,并通过测量变化的频率来计算转速。
3. 脉冲发生器:在主机上安装一个脉冲发生器,它会随着主机旋转而发出脉冲信号。这些脉冲信号可以通过计数器或计时器来测量,以确定主机的转速。
需要注意的是,船舶主机转速测量的具体方法和传感器类型可能会因不同船舶和系统而有所不同。这些方法只是常见的测量原理,在实际应用中可能还有其他方法和技术。
九、船舶主机链条调整原理?
船舶主机链条调整的原理是利用飞重产生的离心力去移动油量调节机构以调节柴油机转速;
2.液压调速器,它是通过液压伺服器将飞重产生的离心力加以放大,使用放大后的动力去移动油量调节机构;
3.电子调速器,转速信号检测和执行机构采用电器方式的调速器。
现代的船舶做主推进动力的柴油机多采用电子调速器,做发电用的柴油机用液压调速器。
十、船舶主机工作原理?
船舶主机电喷工作原理:
1,电子控制柴油机燃油喷射,正时和喷油量的控制;
2,传统的柴油机采用凸轮控制;
3,凸轮转动以控制高压油泵的开启和关闭;
4,电喷系统由传感器、控制器和执行机构组成 。